

InstaDROP

Plug, Set, Encapsulate

Scan me to discover
the full potential of the **InstaDrop**

Secoya
FLUIDIFY PHARMA

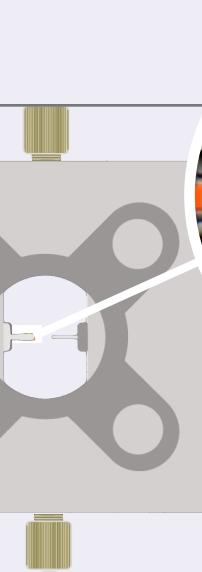
> Perfect control of emulsion production

The heart of the Instadrop is the Raydrop®, a patented microfluidic droplet generator that generates perfectly controlled single and double emulsions. All the peripherals needed to operate the Raydrop are integrated into the Instadrop, making the production of complex emulsions easy.

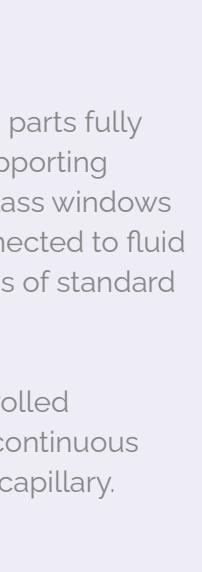
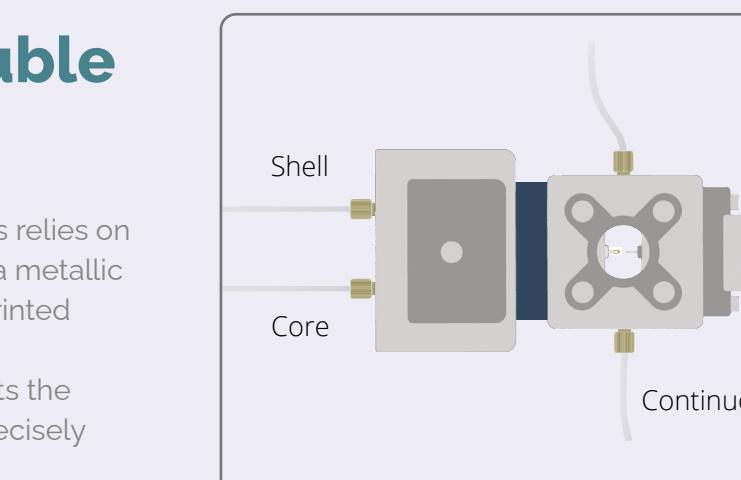
Easy flow and pressure set-up

> RayDrop® Simple & double encapsulation device

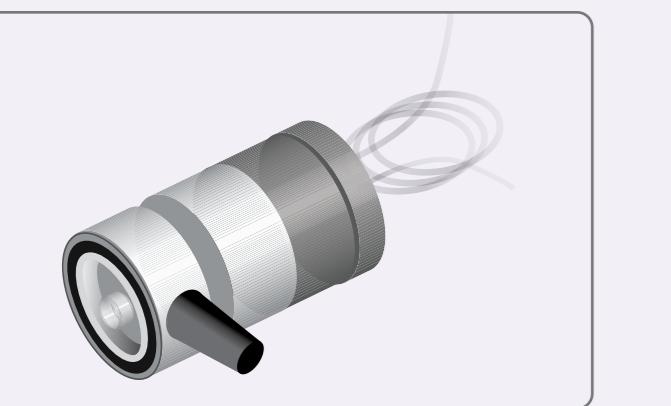
The way we produce droplets, particles and capsules relies on the use of couples of capillaries perfectly aligned in a metallic reservoir. The first capillary is terminated with a 3D-printed nozzle and injects the droplet phase in the junction. The second one, placed in front of the nozzle, collects the emulsion toward the output. The process can be precisely controlled through the included touchscreen.


> Integrated platform for simple and double emulsion

The InstaDrop is designed to allow a fast and easy set-up for precise, repeatable and cost-effective encapsulation processes. This benchtop instrument is ideal for your developments in small molecules and biological material encapsulation.



> RayDrop® Simple & double encapsulation device

The way we produce droplets, particles and capsules relies on the use of couples of capillaries perfectly aligned in a metallic reservoir. The first capillary is terminated with a 3D-printed nozzle and injects the droplet phase in the junction. The second one, placed in front of the nozzle, collects the emulsion toward the output. The process can be precisely controlled through the included touchscreen.


> RayDrop® Simple & double encapsulation device

The way we produce droplets, particles and capsules relies on the use of couples of capillaries perfectly aligned in a metallic reservoir. The first capillary is terminated with a 3D-printed nozzle and injects the droplet phase in the junction. The second one, placed in front of the nozzle, collects the emulsion toward the output. The process can be precisely controlled through the included touchscreen.

> Optional equipment

Rheodyne™ Sample Injector*

The Rheodyne™ sample injector allows a small volume of liquid to be loaded into a loop and then injected into the core or shell entry of the Raydrop®. During the injection step, the fluid from the loop is forced into the Raydrop® by the fluid coming from the core or shell phase reservoir.

Thanks to the injector, The InstaDrop is fully compatible with handling very small amounts of material. It is a must-have when you need to encapsulate an expensive or limited quantity sample, or when you need to screen a large number of conditions.

* Different sample loop volume are available, from 1 μ L to 5 mL.

UV-Module

The optional UV module allows in-line crosslinking of droplets (single or double emulsion) of UV-sensitive material, so that solid beads and microcapsules with a solid shell and a liquid core can be easily produced. Droplets are isolated as they pass continuously through a glass capillary connected to the output of the Raydrop®, thus avoiding coalescence problems during this critical phase.

> Unlock the potential of single and double emulsions with InstaDrop

The InstaDrop integrates everything required to generate microbeads and micro-capsules with the RayDrop®.

Sample injector

Single and double emulsion production device

Compatible with any RayDrop® device

Type

- Pressure controls (0-6 bars)
- Solenoid valves
- Tubing: 1/16" PTFE, 3/32" PEKA
- 2 in PEKA line filters

Volume Sample

5 μ L to 1 mL

Description

Dual mode: Continuous Flow; Positioning; Screening; Switch

Stator Material

PEEK

Continuous flow: 10 mL/min

Sheath phase: 1.5 mL/min

Core phase: 1.5 mL/min

Sheath phase: 1 mL/min (water)

Sheath phase: 0.12 μ L/min (water)

Core phase: 0.120 μ L/min (water)

High power LED

Color camera with microscopic objective

X/Z translation stages

Wetted material

PP, PTFE, PE, PEKA, GLASS, SS316, PCTE

Unit dimensions

85 x 15 x 48 cm (L x W x H)

Weight

25 kg

Power supply

230 V (110 V upon request)

Monodispersed polymeric particles (e.g. PLGA, alginate, chitosan,...)

Achieve uniform, perfectly sized particles ideal for advanced drug delivery systems and controlled release applications.

Formulation screening for small molecules and Active Pharmaceutical Ingredients

Safely encapsulate delicate actives like proteins, genetic material, fragrances,... whether hydrophobic or hydrophilic, ensuring stability and functionality. By using the Sample Injector, a screening of a large number of formulations can be carried out with a small volume of material.

Encapsulation of insoluble actives

Overcome solubility challenges by encapsulating active ingredients that are insoluble in the polymer solvent, unlocking new possibilities in pharmaceuticals, cosmetics, and beyond.

Cell culture and sorting

Encapsulate cells in polymer microbeads (typically hydrogels) to study their evolution under different conditions. Prior to FACS, encapsulate the cells to be sorted in a water-in-oil-in-water double emulsion. Very small volumes of cell suspension can be used thanks to the Sample Injector.

UV-Module option

UV LED technology: 295, 305, 310, 325, 335, 355, 395, 405 nm (other wavelength available upon request)

Maximum irradiance at 10 nm: 150 to 1000 mW/cm² depending on the lens used

Spot diameter at 10 mm: 6 mm to 18 mm depending on the lens used

Adjustable intensity from the touchscreen

UV-tight housing with windows for safe process monitoring

Single and double emulsion production device

Fluid handling system

Reservoirs

Flow meters

Optical system

Wetted material

Unit dimensions

Weight

Power supply

Continuous flow HPLC Sample Injector

5 μ L to 1 mL

Dual mode: Continuous Flow; Positioning; Screening; Switch

PEEK

Continuous flow: 10 mL/min

Sheath phase: 1.5 mL/min

Core phase: 1.5 mL/min

Sheath phase: 1 mL/min (water)

Sheath phase: 0.12 μ L/min (water)

Core phase: 0.120 μ L/min (water)

High power LED

Color camera with microscopic objective

X/Z translation stages

PP, PTFE, PE, PEKA, GLASS, SS316, PCTE

85 x 15 x 48 cm (L x W x H)

25 kg

230 V (110 V upon request)

www.secoya-tech.com

MIKROInstaDrop Brochure_280325_14